Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 230-238, 2007.
Article in English | WPRIM | ID: wpr-90609

ABSTRACT

Colchicine has been shown to regulate the expression of inflammatory gene, but this compound possesses much weaker anti-inflammatory activity. In this study, we synthesized a new colchicine derivative CT20126 and examined its immunomodulatory property. CT20126 was found to have immunosuppressive effects by inhibiting lymphocyte proliferation without cytotoxicity and effectively inhibit the transcriptional expression of the inflammatory genes, iNOS, TNF-alpha, and IL-1beta, in macrophages stimulated by LPS. This effect was nearly comparable to that of cyclosporine A. This compound also significantly suppressed the production of nitric oxide and Th1-related pro-inflammatory cytokines, IL-1beta, TNF-alpha, and IL-2, with minimal suppression of Th2-related anti-inflammatory cytokines IL-4 and IL-10 in the sponge matrix allograft model. Moreover, administration of CT20126 prolonged the survival of allograft skins from BALB/c mice (H-2d) to the dorsum of C57BL/6 (H-2b) mice. The in vivo immune suppressive effects of CT20126 were similar to that of cyclosporine A. These results indicate that this compound may have potential therapeutic value for transplantation rejection and other inflammatory diseases.


Subject(s)
Animals , Female , Mice , Cell Line , Colchicine/analogs & derivatives , Cytokines/biosynthesis , Gene Expression Regulation/drug effects , Graft Survival/drug effects , Immunosuppression Therapy , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Lymphocyte Culture Test, Mixed , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Skin Transplantation/immunology , Th1 Cells/drug effects , Th2 Cells/drug effects , Transplantation, Homologous , Tumor Necrosis Factor-alpha/genetics
2.
Experimental & Molecular Medicine ; : 588-600, 2005.
Article in English | WPRIM | ID: wpr-191492

ABSTRACT

Prostaglandin E2(PGE2), a major product of cyclooxygenase, has been implicated in modulating angiogenesis, vascular function, and inflammatory processes, but the underlying mechanism is not clearly elucidated. We here investigated the molecular mechanism by which PGE 2 regulates angiogenesis. Treatment of human umbilical vein endothelial cells (HUVEC) with PGE 2 increased angiogenesis. PGE 2 increased phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), eNOS activity, and nitric oxide (NO) production by the activation of cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K). Dibutyryl cAMP (DB-cAMP) mimicked the role of PGE 2 in angiogenesis and the signaling pathway, suggesting that cAMP is a down-stream mediator of PGE 2. Furthermore, PGE 2 increased endothelial cell sprouting from normal murine aortic segments, but not from eNOS-deficient ones, on Matrigel. The angiogenic effects of PGE 2 were inhibited by the inhibitors of PKA, PI3K, eNOS, and soluble guanylate cyclase, but not by phospholipase C inhibitor. These results clearly show that PGE 2 increased angiogenesis by activating the NO/cGMP signaling pathway through PKA/PI3K/Akt-dependent increase in eNOS activity.


Subject(s)
Animals , Humans , Mice , Rats , Phosphatidylinositol 3-Kinase/antagonists & inhibitors , Aorta , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Cyclic GMP/biosynthesis , Dinoprostone/pharmacology , Endothelial Cells/drug effects , Enzyme Inhibitors/pharmacology , Mice, Knockout , Neovascularization, Physiologic/drug effects , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type III/deficiency , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Umbilical Veins/cytology
SELECTION OF CITATIONS
SEARCH DETAIL